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Today’s ever-growing datasets present formidable challenges to the statistician that arise
from high dimensionality, heterogeneity, and the computational costs of processing. My
research focuses on addressing these challenges through the development and analysis of sta-
tistical procedures for rich models. My goal is to identify mathematical structures underlying
machine learning problems and to leverage them to design highly accurate and computation-
ally efficient estimators. Along with high-dimensional statistics, discrete mathematics plays
an especially important role in my research; for example in the analysis of count and network
datasets as well as through the application of combinatorial tools to inference problems.

Below I discuss my research on data compression [1, 2], hypothesis testing of discrete
datasets [3, 4], and covariate balancing in high dimension [5, 6, 7]. In my Ph.D. I examined
fundamental trade-offs between data compression and statistical accuracy, focusing on a
popular framework known as coresets that involves summarizing a larger dataset with a
small, representative subsample [1]. During my postdoc, I investigated the detection of latent
structure in heterogeneous discrete data, including (i) testing for diversity in heteroskedastic
count datasets, such as word-document matrices [3], and (ii) community detection in degree-
hetergeneous networks [4]. A third branch of my research focuses on balancing covariates in
high-dimensional datasets [5, 6, 7], a combinatorial optimization problem with applications
to the design of randomized control trials.

1. Coresets and estimation

A coreset is a small, representative subset of a dataset. Coresets improve the efficiency
of data processing by serving as a more tractable proxy for a larger dataset. Inspired by
this approach to improving computational efficiency, many recent works investigate running
machine learning algorithms on coresets [8, 9, 10, 11, 12]. However, the performance of
estimators run on coresets for basic statistical tasks, such as learning an unknown density
from observations, is largely unexplored. In [1] we address this gap in understanding by
developing a statistical perspective on coreset density estimation. Our results provide (i) a
quantitative understanding of how many datapoints are needed in the coreset to attain a
desired statistical accuracy, and (ii) a novel coreset construction method that is computa-
tionally efficient, resulting in a natural weighted kernel density estimator whose statistical
accuracy is near-optimal.

Consider the problem of estimating an unknown probability density function f given
observations D = {X1, . . . , Xn} sampled from the probability distribution associated to f . A

coreset C is a data-dependent subset of D, and we define a coreset-based estimator f̂C to be an
estimator that only depends on the data points in C. Our first contribution characterizes the
optimal rate of estimation of smooth densities via coreset-based estimators. For compactly
supported d-dimensional smooth densities with β bounded derivatives, we prove that the
minimax rate of estimation is |C|−β/d, up to logarithmic factors. Moreover, we show that a
weighted coreset kernel density estimator of the form

f̂C(y) =
∑
Xi∈C

λiK (Xi − y) , (1)

is near-optimal, where K is a smoothing kernel with appropriate bandwidth, and the weights
λi are nonnegative and sum to 1. The weights and coreset in (1) are obtained using
Carathéodory’s theorem, a classical theorem in discrete geometry, applied to a Fourier em-
bedding of the kernel functions {K(Xi − ·)} into a finite-dimensional space.
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In follow-up work [2], we continue the investigation of data compression for statistical tasks
and develop a fast evaluation method for generic nonparametric estimators. Our scheme
interpolates a black-box estimator over a combinatorially structured mesh and extends prior
works focusing on fast evaluation of kernel density estimators [13, 14, 15, 16].

2. Testing for diversity in count data

An important task in statistics is to develop methods that perform well in more realistic
models extending beyond the simplified i.i.d. setting. During my postdoc I examined two
high-dimensional testing problems in heteroskedastic settings involving multinomial [3] and
network [4] datasets. For each problem, we identify a simple and practical test statistic that
has a tractable parameter-free limiting distribution and prove that it is powerful against a
broad class of alternatives. In this section I focus on multinomial testing [3].

Our work on multinomial testing [3] is inspired by questions about quantifying diversity
in real-world discrete datasets, such as word counts of text data. For example, do consumers
have widely differing reviews about a certain film? We aim to provide a data-driven answer
using the word counts of that movie’s reviews on Amazon. In [3], we present a general
framework for testing the diversity of such types of count datasets, as summarized below.

We model the dataset as independent multinomial observations X1, . . . , Xn ∈ Rp divided
into K known groups. Here Xi is a p-dimensional vector of counts resulting from Ni random
words drawn from a distribution on a dictionary of size p that has probability mass function
Ωi ∈ Rp. The group mean µk is the average probability mass function for the kth group and
provides a summary of the distribution on words in that group. Our goal is to test if the K
group means are all equal to each other (i.e., µ1 = · · · = µK) or not. In the movie review
example above, the null hypothesis indicates that the reviews are all similar to each other,
while the alternative signifies diversity of the reviews.

This problem involves significant heterogeneity (the number of words Ni and population
word frequency vectors Ωi may vary, even within a group) and high dimensionality (the
number of groups K, the number of observations n, and the dictionary size p may grow at
different rates). To address these challenges, we propose a moment-based test statistic called
the debiased and length-adjusted variability estimator (DELVE).

Under mild assumptions, we prove that
DELVE is asymptotically normal under the null
hypothesis and that it achieves the optimal de-
tection boundary. The flexibility of our setting
allows for a wide array of experiments on real
data. We apply our method to a dataset of ab-
stracts in statistics journals [17] and another of
Amazon movie reviews [18]. In the figure, we
partition the reviews of a classic horror film by
review score (which ranges from 1 to 5) and eval-
uate DELVE with K = 2 on the two corpora
corresponding to each pair of scores. We observe
significant polarization between the 1–2 score reviews and the 3–5 score reviews.

3. Covariate balancing

My works [5, 6] and [7] investigate a combinatorial optimization problem known as co-
variate balancing (commonly known as discrepancy minimization in the computer science
literature) that involves dividing a collection of vectors X1, . . . , Xn ∈ Rd into two groups
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S1 and S2 that are well-balanced in the sense that the metric ‖
∑

i∈S1
Xi −

∑
i∈S2

Xi‖∞ is
small. Algorithmic questions in covariate balancing have been the subject of intensive study
in theoretical computer science over the past decade (see e.g. [19, 20, 21]), and more recently
applications of covariate balancing to the design of randomized control trials have been rec-
ognized [22, 23, 5, 24]. It is known that if the treatment and control groups balance the
covariates of participants, then the two groups are statistically similar to each other, and
treatment effects can be more accurately estimated.

Equipped with these motivations, we investigate in [5] a statistical variant of discrepancy
minimization where the input vectors X1, . . . , Xn are i.i.d. standard Gaussian vectors. We
prove that the optimal balance has value

√
π
2
·
√
n 2−n/d asymptotically when n� d. We also

develop an algorithm that achieves balance n−(logn)/d, which decays faster than any polyno-
mial and establishes the best known guarantee when 2 ≤ d = O(1). In certain randomized
control trial setups, designs based on our results lead to significantly improved inference of
treatment effects [25].

In recent work [7], we study the ellipsoid fitting problem, which is the task of interpolating
i.i.d. standard Gaussian points v1, . . . , vn ∼ N(0, Id) with an ellipsoid. This basic geometric
question is related to the semidefinite programming relaxation (SDP) of covariate balancing
as well as problems in machine learning, such as independent component analysis and low-
rank matrix decompositions [26]. A well-known conjecture of [27] states that ellipsoid fitting
is possible when n� d2/4 and impossible when n� d2/4.1 In [7] we resolve this conjecture
up to logarithmic factors, proving that ellipsoid fitting is possible if n ≤ d2/polylog(d). As a
corollary, our ellipsoid fitting result implies that when n � d, SDP-based methods are unable
to design randomized control trials with highly accurate treatment effect estimators.
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