Detecting a small community in a large network

Paxton Turner

Statistics Department, Harvard University

Collaborators

Social networks

Data: $n \times n$ adjacency matrix A (symmetric)

$$
A(i, j)= \begin{cases}1, & \text { an edge between nodes } i \text { and } j \\ 0, & \text { otherwise }\end{cases}
$$

with K perceivable "communities" $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{K}$

- Community: group of nodes that have more edges within than across
- The upper triangle of A are independent Bernoulli
- Let $W=A-\mathbb{E}[A]$. For a rank- K matrix Ω,

$$
A=\underbrace{\Omega}_{\text {main signal }}-\underbrace{\operatorname{diag}(\Omega)}_{\text {secondary signal }}+\underbrace{W}_{\text {noise }}
$$

Detecting a small community

$$
H_{0}: K=1 \quad \text { vs. } \quad H_{1}: K>1
$$

- Focus: Some communities are very small
- E.g., Testing whether there is a small focused group in a large coauthorship network
- Includes clique detection as a special case (Alon et al, 1998; Arias-Castro-Verzelen, 2014)

Degree-Corrected Block Model (DCBM)

$$
\Omega(i, j)=\theta_{i} \theta_{j} \cdot \pi_{i}^{\prime} P \pi_{j}, \quad \Longleftrightarrow \quad \Omega=\Theta \Pi P \Pi^{\prime} \Theta
$$

- $\Pi=\left[\pi_{1}, \ldots, \pi_{n}\right]^{\prime} \in \mathbb{R}^{n, K}$, where $\pi_{i} \in \mathbb{R}^{K}$ models community label of node i : when $i \in \mathcal{C}_{k}, \pi_{i}(\ell)=1$ if $\ell=k$ and $\pi_{i}(\ell)=0$ otherwise.
- $P \in \mathbb{R}^{K, K}$ models community structure: $P(k, \ell)$ is the baseline connecting probability for communities $k \& \ell$.
- $\Theta=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{n}\right)$, where $\theta_{i}>0$ models degree heterogeneity of node i
- Reduces to stochastic block model if $\theta_{i} \equiv 1$.

Degree matching, why χ^{2} may lose power

 Jin, Ke, Luo (2021)χ^{2}-test : $\quad X=\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}, \quad d_{i}$ is degree of node i

- χ^{2} is powerful in degree-homogeneous models (SBM) (Arias-Castro-Verzelen, 2014)
- Why does it lose power in DCBM?
- Degree matching: Can pair any alternative DCBM with a null model that has the same degree profile (in expectation)

Degree matching, why χ^{2} may lose power

 Jin, Ke, Luo (2021)χ^{2}-test $: \quad X=\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}, \quad d_{i}$ is degree of node i

- χ^{2} is powerful in degree-homogeneous models (SBM) (Arias-Castro-Verzelen, 2014)
- Why does it lose power in DCBM?
- Degree matching: Can pair any alternative DCBM with a null model that has the same degree profile (in expectation)
- Proof: Sinkhorn's matrix scaling theorem

The sub-DCBM with $K=2$

sub-DCBM: severely un-balanced DCBM

As $K=2$, we only have two communities, \mathcal{C}_{0} and \mathcal{C}_{1}. For $m \ll n$, suppose
$P\left(\right.$ node i belongs to community $\left.\mathcal{C}_{k}\right)= \begin{cases}1-m / n, & k=0, \\ m / n, & k=1\end{cases}$

$$
\Omega(i, j)=\left\{\begin{array}{ll}
\theta_{i} \theta_{j} \cdot a, & \text { if } i, j \in \mathcal{C}_{1}, \\
\theta_{i} \theta_{j} \cdot c, & \text { if } i, j \in \mathcal{C}_{0}, \\
\theta_{i} \theta_{j} \cdot b, & \text { otherwise }
\end{array} \quad \text { where } b=\frac{n c-(a+c) m}{n-2 m} .\right.
$$

Lemma: This parameterizes all sub-DCBMs with $K=2$.

The sub-DCBM with $K=2$, II

- We can pair the sub-DCBM with a null model $\Omega(i, j)=\alpha \cdot \theta_{i} \theta_{j}$ so that for each node, the expected degrees under the null and alternative are matched
- Naive degree-based χ^{2}-test is asymptotically powerless
- The SgnQ test (TBA) has much better power

Simulation setting: $(n, m, c)=(100,10,0.1), \theta_{i} \equiv 1$

Next

- The naive χ^{2}-test may lose power
- Question: How to find a fast, broadly implementable, and powerful test?
- Answer. The SgnQ test (TBA)
- Proposed by Jin, Ke, Luo (2021) but never studied for severely unbalanced DCBM

Note. Most of our ideas work for general DCBM, but we focus on sub-DCBM for completeness.

The Signed-Quadrilateral (SgnQ) test

$-C_{n}^{(m)}=\sum_{i_{1}, i_{2}, \ldots, i_{m}(\text { distinct })} A_{i_{1} i_{2}} A_{i_{2} i_{3}} \ldots A_{i_{m} i_{1}}=\#\{\mathrm{~m}-$ gons $\}$

- Inspired by this, let $m=4, \hat{\eta}=\left(\mathbf{1}_{n} A \mathbf{1}_{n}\right)^{-1 / 2} A \mathbf{1}_{n}$, and apply the cycle count idea above to $\widehat{A}=A-\widehat{\eta} \widehat{\eta}^{\prime}$:

$$
Q_{n}=\sum_{i, j, k, \ell((\text { distinct })} \widehat{A}_{i j} \widehat{A}_{j k} \widehat{A}_{k \ell} \widehat{A}_{\ell i}
$$

- The SgnQ test statistic is

$$
\psi_{n}=\frac{Q_{n}-2\left(\|\hat{\eta}\|^{2}-1\right)^{2}}{\sqrt{8\left(\|\hat{\eta}\|^{2}-1\right)^{4}}}
$$

Parameter-free limiting null (SgnQ test)

Theorem. Suppose $\Omega=\alpha \theta \theta^{\prime}$, where $\|\theta\|_{1}=n, n \alpha \rightarrow \infty$, and $\alpha \theta_{\text {max }}^{2} \log \left(n^{2} \alpha\right) \rightarrow 0$. As $n \rightarrow \infty, \psi_{n} \rightarrow N(0,1)$ in distribution.

Proof. Mild adaptation of Jin, Ke, Luo (2021).

- Nontriviality: DCBM has numerous unknown parameters. It took years' efforts to find a test with an explicit and parameter-free limiting null distribution
- Applications: We can obtain an approximate p-value and use it for (a) measuring co-authorship diversity and (b) setting termination rule in a recursive/hierarchical community detection scheme

Carroll's personalized coauthor network

Data: Paper attributes in 36 journals, 1975-2015 (Ji-Jin-Ke-Li, 2022). The coauthorship network restricted to Carroll and his co-authors.

Left: Carroll's network (only nodes with >40 degrees are shown). The SgnQ p-value is 0.019 . Right: An identified small community of 17 authors. Restricted to this sub-network, the SgnQ p-value is 0.682 .

Power of the SgnQ test

- $\operatorname{Var}\left(Q_{n}\right) \approx\left(\|\widehat{\eta}\|^{2}-1\right)^{4} \approx \lambda_{1}^{4}$, and by Weyl's theorem, we can't use a rank-1 matrix to well-approx. a rank- K one:

$$
\begin{aligned}
Q_{n} & =\sum_{i_{1}, i_{2}, i_{3}, i_{4}(\text { distinct })} \widehat{A}_{i 12} \widehat{A}_{i i_{3}} \widehat{A}_{i i_{1} 4} \widehat{A}_{i 4 i_{1}} \\
& \approx \operatorname{trace}\left(\left[\Omega-\widehat{\eta \eta^{\prime}}\right]^{4}\right) \geq C \sum_{k=2}^{K} \lambda_{k}^{4} .
\end{aligned}
$$

- Therefore, the power of the SgnQ test hinges on

$$
\frac{\sum_{k=2}^{K} \lambda_{k}^{4}}{\lambda_{1}^{2}} \asymp\left(\frac{\lambda_{2}}{\sqrt{\lambda_{1}}}\right)^{4}
$$

Power of SgnQ under the sub-DCBM

In the sub-DCBM with $K=2,\left|\mathcal{C}_{1}\right|=m$ and $\left|\mathcal{C}_{0}\right|=n-m$, and

$$
\Omega(i, j)=\left\{\begin{array}{ll}
\theta_{i} \theta_{j} \cdot a, & \text { if } i, j \in \mathcal{C}_{1}, \\
\theta_{i} \theta_{j} \cdot c, & \text { if } i, j \in \mathcal{C}_{0}, \\
\theta_{i} \theta_{j} \cdot b, & \text { otherwise. }
\end{array} \quad \text { where } b=\frac{n c-(a+c) m}{n-2 m} .\right.
$$

Theorem. Consider a sub-DCBM with $K=2$ where $\theta_{\text {max }} \leq C \theta_{\text {min }}$ and $n c \rightarrow \infty$. Suppose as $n \rightarrow \infty$,

$$
m(a-c) / \sqrt{c n} \rightarrow \infty,
$$

- For any fixed α, the power of level- $\alpha \operatorname{SgnQ}$ test $\rightarrow 1$.
- Theorem also holds under severe degree-heterogeneity (with appropriate regularity conditions)

Next: Phase transition

Computationally impossible

Phase transition

- Computationally easy: There is a polynomial-time test whose sum of type I and type II errors $\rightarrow 0$.
- Statistically possible but computationally hard: For any poly-time test, sum of type I and type II errors $\rightarrow 1$.
- Statistically impossible: For any test, the sum of type I and type II errors $\rightarrow 1$.

Phase transition (sub-DCBM, $m \gg \sqrt{n}$)

Theorem. In the sub-DCBM with $K=2$, assume $\theta_{\text {max }} \leq C \theta_{\text {min }}$ and $n c \rightarrow \infty$. As $n \rightarrow \infty$,

Easy: if $m(a-c) / \sqrt{n c} \rightarrow \infty$, then SgnQ test satisfies Type I + Type II error $\rightarrow 0$

Hard: if $m(a-c) / \sqrt{n c} \rightarrow 0$, no poly-time test exists ${ }^{1}$ with Type I + Type II error $\rightarrow 0$

Impossible: if $\sqrt{\frac{n}{m}} \cdot m(a-c) / \sqrt{n c} \rightarrow 0$, no test (even non-polytime) has Type I + Type II error $\rightarrow 0$

Therefore, there is a gap between statistically possible and computationally possible, but fortunately, the SgnQ test is optimal among all polynomial time tests.
${ }^{1}$ conditionally on the low-degree conjecture (Hopkins, 2018)

Phase transition (sub-DCBM, $m \ll \sqrt{n}$)

The case of $m \ll \sqrt{n}$ is more complicated, and how to close the gap between statistically possible and computationally possible remains an open problem

Theorem. In the sub-DCBM model with $K=2$, assume $\theta_{\max } \leq C \theta_{\min }$ and $n c \rightarrow \infty$. As $n \rightarrow \infty$,

Easy: if $m(a-c) / \sqrt{n c} \rightarrow \infty$, then SgnQ test satisfies Type I + Type II error $\rightarrow 0$

Hard: if $\frac{\sqrt{n}}{m} \cdot m(a-c) / \sqrt{n c} \rightarrow 0$, no poly-time test exists ${ }^{2}$ with Type I + Type II error $\rightarrow 0$

Impossible: if $\sqrt{\frac{n}{m}} \cdot m(a-c) / \sqrt{n c} \rightarrow 0$, no test (even non-polytime) has Type I + Type II error $\rightarrow 0$

Phase transition visualization

Recall that in the sub-DCBM with $K=2,\left|\mathcal{C}_{1}\right|=m$ and $\left|\mathcal{C}_{0}\right|=n-m$, and

$$
\Omega(i, j)=\left\{\begin{array}{ll}
\theta_{i} \theta_{j} \cdot a, & \text { if } i, j \in \mathcal{C}_{1}, \\
\theta_{i} \theta_{j} \cdot c, & \text { if } i, j \in \mathcal{C}_{0}, \\
\theta_{i} \theta_{j} \cdot b, & \text { otherwise. }
\end{array} \quad \text { where } b=\frac{n c-(a+c) m}{n-2 m} .\right.
$$

For visualization, we fix parameters $\beta, \gamma \in(0,1)$ and let
Small community size : $m=n^{1-\beta}$
Nodewise SNR : $\frac{a-c}{\sqrt{c}}=n^{-\gamma}$.

Phase transition visualization, II

Orange: $\beta+2 \gamma>1 / 2$. Blue: $\beta+\gamma<1 / 2$. Green: $\beta+2 \gamma<1 / 2, \beta+\gamma>1 / 2$, and $\gamma>0$.

Take home message

- The SgnQ test is fast, has computable p-values, and is powerful against a broad class of alternatives.
- In broad network (or hypergraph) models, degree-based tests may lose power from degree-matching.
- If $m \ll \sqrt{n}$, SgnQ test is the optimal polynomial time test. If $m>\sqrt{n}$, it is an interesting open problem to close the statistical-computational gap.

Take home message

- The SgnQ test is fast, has computable p-values, and is powerful against a broad class of alternatives.
- In broad network (or hypergraph) models, degree-based tests may lose power from degree-matching.
- If $m \ll \sqrt{n}$, SgnQ test is the optimal polynomial time test. If $m \gg \sqrt{n}$, it is an interesting open problem to close the statistical-computational gap.
- Thanks!

