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Social networks
Data: n × n adjacency matrix A (symmetric)

A(i , j) =

{
1, an edge between nodes i and j
0, otherwise

with K perceivable “communities” C1, C2, . . . , CK
I Community: group of nodes that have more edges within

than across

I The upper triangle of A are independent Bernoulli

I Let W = A− E[A]. For a rank-K matrix Ω,

A = Ω︸︷︷︸
main signal

− diag(Ω)︸ ︷︷ ︸
secondary signal

+ W︸︷︷︸
noise
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Detecting a small community

H0 : K = 1 vs. H1 : K > 1

I Focus: Some communities are very small

I E.g., Testing whether there is a small focused
group in a large coauthorship network

I Includes clique detection as a special case
(Alon et al, 1998; Arias-Castro–Verzelen, 2014)
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Degree-Corrected Block Model (DCBM)

Ω(i , j) = θiθj · π′iPπj , ⇐⇒ Ω = ΘΠPΠ′Θ

I Π = [π1, . . . , πn]′ ∈ Rn,K , where πi ∈ RK models
community label of node i : when i ∈ Ck , πi(`) = 1 if
` = k and πi(`) = 0 otherwise.

I P ∈ RK ,K models community structure: P(k , `) is the
baseline connecting probability for communities k & `.

I Θ = diag(θ1, . . . , θn), where θi > 0 models degree
heterogeneity of node i

I Reduces to stochastic block model if θi ≡ 1.
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Degree matching, why χ2 may lose power

Jin, Ke, Luo (2021)

χ2-test : X =
n∑

i=1

(di − d̄)2, di is degree of node i

I χ2 is powerful in degree-homogeneous models (SBM)
(Arias-Castro–Verzelen, 2014)

I Why does it lose power in DCBM?

I Degree matching: Can pair any alternative DCBM
with a null model that has the same degree profile
(in expectation)

I Proof: Sinkhorn’s matrix scaling theorem
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The sub-DCBM with K = 2

sub-DCBM: severely un-balanced DCBM

As K = 2, we only have two communities, C0 and C1. For
m� n, suppose

P(node i belongs to community Ck) =

{
1−m/n, k = 0,
m/n, k = 1

Ω(i , j) =

 θiθj · a, if i , j ∈ C1,
θiθj · c , if i , j ∈ C0,
θiθj · b, otherwise.

where b = nc−(a+c)m
n−2m .

Lemma: This parameterizes all sub-DCBMs with K = 2.
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The sub-DCBM with K = 2, II
I We can pair the sub-DCBM with a null model

Ω(i , j) = α · θiθj so that for each node, the expected
degrees under the null and alternative are matched

I Naive degree-based χ2-test is asymptotically powerless

I The SgnQ test (TBA) has much better power

Simulation setting: (n,m, c) = (100, 10, 0.1), θi ≡ 1
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Next

I The naive χ2-test may lose power

I Question: How to find a fast, broadly implementable,
and powerful test?

I Answer. The SgnQ test (TBA)

I Proposed by Jin, Ke, Luo (2021) but never studied for
severely unbalanced DCBM

Note. Most of our ideas work for general DCBM, but we
focus on sub-DCBM for completeness.
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The Signed-Quadrilateral (SgnQ) test

m = 3 m = 4 m = 5I C
(m)
n =

∑
i1,i2,...,im(distinct)

Ai1i2Ai2i3 . . .Aimi1 = #{m-gons}

I Inspired by this, let m = 4, η̂ = (1nA1n)−1/2A1n, and

apply the cycle count idea above to Â = A− η̂ η̂ ′:

Qn =
∑

i ,j ,k,`((distinct)

Âij Âjk Âk` Â`i

I The SgnQ test statistic is

ψn =
Qn − 2(‖η̂‖2 − 1)2√

8(‖η̂‖2 − 1)4
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Parameter-free limiting null (SgnQ test)

Theorem. Suppose Ω = αθθ′, where ‖θ‖1 = n, nα→∞, and
αθ2max log(n2α)→ 0. As n→∞, ψn → N(0, 1) in distribution.

Proof. Mild adaptation of Jin, Ke, Luo (2021).

I Nontriviality: DCBM has numerous unknown
parameters. It took years’ efforts to find a test with an
explicit and parameter-free limiting null distribution

I Applications: We can obtain an approximate p-value
and use it for (a) measuring co-authorship diversity and
(b) setting termination rule in a recursive/hierarchical
community detection scheme
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Carroll’s personalized coauthor network
Data: Paper attributes in 36 journals, 1975-2015 (Ji-Jin-Ke-Li, 2022).
The coauthorship network restricted to Carroll and his co-authors.

Left: Carroll’s network (only nodes with > 40 degrees are shown). The
SgnQ p-value is 0.019. Right: An identified small community of 17
authors. Restricted to this sub-network, the SgnQ p-value is 0.682.
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Power of the SgnQ test

I Var(Qn) ≈ (‖η̂‖2− 1)4 ≈ λ41, and by Weyl’s theorem, we
can’t use a rank-1 matrix to well-approx. a rank-K one:

Qn =
∑

i1,i2,i3,i4(distinct)

Âi1i2Âi2i3Âi3i4Âi4i1

≈ trace([Ω− η̂η̂′]4) ≥ C
K∑

k=2

λ4k .

I Therefore, the power of the SgnQ test hinges on∑K
k=2 λ

4
k

λ21
�
( λ2√

λ1

)4
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Power of SgnQ under the sub-DCBM

In the sub-DCBM with K = 2, |C1| = m and |C0| = n−m, and

Ω(i , j) =

 θiθj · a, if i , j ∈ C1,
θiθj · c , if i , j ∈ C0,
θiθj · b, otherwise.

where b = nc−(a+c)m
n−2m .

Theorem. Consider a sub-DCBM with K = 2 where
θmax ≤ Cθmin and nc →∞. Suppose as n→∞,

m(a − c)/
√
cn→∞,

I For any fixed α, the power of level-α SgnQ test → 1.

I Theorem also holds under severe degree-heterogeneity
(with appropriate regularity conditions)
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Next: Phase transition

m

m
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Phase transition
I Computationally easy: There is a polynomial-time test

whose sum of type I and type II errors → 0.

I Statistically possible but computationally hard: For
any poly-time test, sum of type I and type II errors → 1.

I Statistically impossible: For any test, the sum of type
I and type II errors → 1.

m

m
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Phase transition (sub-DCBM, m�
√
n)

Theorem. In the sub-DCBM with K = 2, assume
θmax ≤ Cθmin and nc →∞. As n→∞,

Easy: if m(a − c)/
√
nc →∞, then SgnQ test satisfies

Type I + Type II error → 0

Hard: if m(a − c)/
√
nc → 0, no poly-time test exists1

with Type I + Type II error → 0

Impossible: if
√

n
m
·m(a − c)/

√
nc → 0, no test (even

non-polytime) has Type I + Type II error → 0

Therefore, there is a gap between statistically possible and
computationally possible, but fortunately, the SgnQ test is
optimal among all polynomial time tests.

1conditionally on the low-degree conjecture (Hopkins, 2018)
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Phase transition (sub-DCBM, m�
√
n)

The case of m�
√
n is more complicated, and how to close

the gap between statistically possible and computationally
possible remains an open problem

Theorem. In the sub-DCBM model with K = 2, assume
θmax ≤ Cθmin and nc →∞. As n→∞,

Easy: if m(a − c)/
√
nc →∞, then SgnQ test satisfies

Type I + Type II error → 0

Hard: if
√
n

m
·m(a − c)/

√
nc → 0, no poly-time test

exists2 with Type I + Type II error → 0

Impossible: if
√

n
m
·m(a − c)/

√
nc → 0, no test (even

non-polytime) has Type I + Type II error → 0

2conditionally on the low-degree conjecture (Hopkins, 2018)
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Phase transition visualization

Recall that in the sub-DCBM with K = 2, |C1| = m and
|C0| = n −m, and

Ω(i , j) =

 θiθj · a, if i , j ∈ C1,
θiθj · c , if i , j ∈ C0,
θiθj · b, otherwise.

where b = nc−(a+c)m
n−2m .

For visualization, we fix parameters β, γ ∈ (0, 1) and let

Small community size : m = n 1−β

Nodewise SNR :
a − c√

c
= n−γ.
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Phase transition visualization, II

m

m

Orange: β + 2γ > 1/2. Blue: β + γ < 1/2.
Green: β + 2γ < 1/2, β + γ > 1/2, and γ > 0.
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Take home message

I The SgnQ test is fast, has computable p-values, and is
powerful against a broad class of alternatives.

I In broad network (or hypergraph) models, degree-based
tests may lose power from degree-matching.

I If m�
√
n, SgnQ test is the optimal polynomial time

test. If m�
√
n, it is an interesting open problem to

close the statistical-computational gap.
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I In broad network (or hypergraph) models, degree-based
tests may lose power from degree-matching.

I If m�
√
n, SgnQ test is the optimal polynomial time

test. If m�
√
n, it is an interesting open problem to

close the statistical-computational gap.

I Thanks!
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