Efficient Interpolation of Density Estimators

Paxton Turner (MIT)

Jingbo Liu (UIUC)

Philippe Rigollet (MIT)

Motivation: Fast evaluation of KDE

Kernel density estimator (KDE):

$$\hat{f}(y) = \frac{1}{n} \sum_{j=1}^{n} K_h (X_j - y)$$

Motivation: Fast evaluation of KDE

Kernel density estimator (KDE):

$$\hat{f}(y) = \frac{1}{n} \sum_{j=1}^{n} K_h (X_j - y)$$

Statistically accurate, computationally slow

Motivation: Fast evaluation of KDE

Kernel density estimator (KDE):

$$\hat{f}(y) = \frac{1}{n} \sum_{j=1}^{n} K_h (X_j - y)$$

- Statistically accurate, computationally slow
- Many known speed-ups:
 - Fast Gauss transform (Greengard-Strain), locality sensitive hashing (Charikar-Siminelakis, Backurs et al), coresets (Phillips-Tai, Karnin-Liberty), binning (Scott-Sheather), interpolation (Jones, Kogure)

Can we speed up accurate estimators?

Problem

Given: accurate estimator \hat{f} for unknown smooth f \longleftarrow Hölder smooth of order β

Problem

Given: accurate estimator \hat{f} for unknown smooth f \leftarrow Hölder smooth of order β

Goal: Convert \hat{f} to \hat{g} satisfying

- 1. (Accurate) \hat{g} is a good estimator for f
- 2. (Low-space) \hat{g} can be stored efficiently
- 3. (Fast) \hat{g} can be queried efficiently

Our Approach

Problem

Given: good estimator \hat{f} for smooth f

Goal: Convert \hat{f} to \hat{g} that is accurate, low-space, and fast

• Fact: Hölder β functions \approx degree β piecewise polynomials

Our Approach

Problem

Given: good estimator \hat{f} for smooth f

Goal: Convert \hat{f} to \hat{g} that is accurate, low-space, and fast

• Fact: Hölder eta functions pprox degree eta piecewise polynomials

Our Approach

Problem

Given: good estimator \hat{f} for smooth f

Goal: Convert \hat{f} to \hat{g} that is accurate, low-space, and fast

• Fact: Hölder β functions pprox degree β piecewise polynomials

• Strategy: recover these polynomials from \hat{f}

Principal Lattice Interpolation

•
$$\mathcal{P}(\beta) = \text{simplex } \cap \frac{1}{\beta} \mathbb{Z}^d$$

Principal Lattice Interpolation

•
$$\mathcal{P}(\beta) = \text{simplex } \cap \frac{1}{\beta} \mathbb{Z}^d$$

• $\mathcal{P}(eta)$ has unique interpolants of degree eta

Construction of \hat{g}

Construction of \hat{g} $\mathcal{P}_3(\boldsymbol{\beta})$ h $\mathcal{P}_5(\beta)$ $\mathcal{P}_6(\beta)$

Construction of \hat{g} $\mathcal{P}_3(\boldsymbol{\beta})$

For each box B_j , compute the interpolant $q_j(y)$ on $\mathcal{P}_j(\beta)$

Construction of \hat{g}

For each box B_j , compute the interpolant $q_j(y)$ on $\mathcal{P}_j(\beta)$

$$\hat{g}(y) = \sum_{B_j} \mathbf{1} \left(y \in B_j \right) \sum_{x \in \mathcal{P}_j(\beta)} \hat{f}(x) \prod_{j=1}^{\beta} h_j^x(y)$$

Theorem Suppose \hat{f} is pointwise minimax optimal:

$$\sup_{y \in [0,1]^d} \mathbb{P}\left[\left| \hat{f}(y) - f(y) \right| > t \, n^{-\frac{\beta}{2\beta + d}} \right] \lesssim e^{-ct^2}$$

Theorem Suppose \hat{f} is pointwise minimax optimal:

$$\sup_{y \in [0,1]^d} \mathbb{P}\left[\left| \hat{f}(y) - f(y) \right| > t \, n^{-\frac{\beta}{2\beta + d}} \right] \lesssim e^{-ct^2}$$

Set $h \asymp n^{-\frac{1}{2\beta+d}}$. Then \hat{g} has these properties.

• Sublinear space: $ilde{O}_{eta,d}(n^{rac{d}{2eta+d}})$

Theorem Suppose \hat{f} is pointwise minimax optimal:

$$\sup_{y \in [0,1]^d} \mathbb{P}\left[\left| \hat{f}(y) - f(y) \right| > t \, n^{-\frac{\beta}{2\beta + d}} \right] \lesssim e^{-ct^2}$$

Set $h \asymp n^{-\frac{1}{2\beta+d}}$. Then \hat{g} has these properties.

- Sublinear space: $ilde{O}_{eta,d}(n^{rac{d}{2eta+d}})$
- Near-constant query time: $\overline{ ilde{O}_{eta,d}(1)}$

Theorem Suppose \hat{f} is pointwise minimax optimal:

$$\sup_{y \in [0,1]^d} \mathbb{P}\left[\left| \hat{f}(y) - f(y) \right| > t \, n^{-\frac{\beta}{2\beta + d}} \right] \lesssim e^{-ct^2}$$

Set $h \approx n^{-\frac{1}{2\beta+d}}$. Then \hat{g} has these properties.

- Sublinear space: $ilde{O}_{eta,d}(n^{rac{d}{2eta+d}})$
- Near-constant query time: $ilde{O}_{eta,d}(1)$
- Near-minimax error: $\|f \hat{g}\|_{\infty} \lesssim \tilde{O}_{\beta,d}(n^{-\frac{\beta}{2\beta+d}})$

Demo

