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* Statistically accurate, computationally slow
* Many known speed-ups:

* Fast Gauss transform (Greengard-Strain), locality sensitive hashing (Charikar-
Siminelakis, Backurs et al), coresets (Phillips-Tai, Karnin-Liberty), binning (Scott-
Sheather), interpolation (Jones, Kogure)
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Holder smooth

Given: accurate estimator f for unknown smooth [ <=
of order [

Goal: Convert f to § satisfying

1. (Accurate) g is a good estimator for [
2. (Low-space) g can be stored efficiently

3. (Fast) g can be queried efficiently
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* Strategy: recover these polynomials from f



Principal Lattice Interpolation
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 P(B) = simplex ﬂ% 7.2

* P(B) has unique

interpolants of degree [
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For each box Bj,
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* Near-minimax error: ||f — G|l S éﬁ,d(n_ 2p+d)
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