Efficient Interpolation of Density Estimators

Paxton Turner (MIT), Jingbo Liu (UIUC), Philippe Rigollet (MIT)

Motivation

Fast evaluation of kernel density estimators

- Statistically accurate, computationally slow
- Many known speed-ups: Fast Gauss transform, locality sensitive hashing, coresets, binning, interpolation

Question: Given an accurate estimator, can we convert to a computationally tractable form?

Problem

Given: good estimator \hat{f} for unknown $f \leftarrow \text{H\"older smooth}$ Goal: Convert \hat{f} to \hat{g} satisfying

of order β

- 1. (Accurate) \hat{g} is a good estimator for f
- 2. (Low-space) \hat{g} can be stored efficiently
- 3. (Fast) \hat{g} can be queried efficiently

Our approach

Fact: $f \approx \text{degree } \beta$ piecewise polynomial Strategy: recover these polynomials from \hat{f}

Principal Lattice Interpolation

Definition (principal lattice) Let $\beta \in \mathbb{Z}$. Define

$$\mathcal{P}(\beta) = \left\{ x \in \mathbb{R}^d : \beta x \in \mathbb{Z}_{\geq 0}^d \text{ and } \sum_{i=1}^d x_i \leq 1 \right\}$$

Example ($d = 2, \beta = 5$) Properties

• $|\mathcal{P}(\beta)| = {\beta+d \choose \beta}$ Every $x \in \mathcal{P}(\beta)$ has associated linear functions $\left\{h_j^x\right\}_{j=1}^\beta$ such that

 $\prod_{j=1}^{\beta} h_j^x(x') = \mathbf{1}(x' = x)$

Theorem (Chung-Yao) The degree
$$eta$$
 polynomial

$$q(y) = \sum_{x \in \mathcal{P}(\beta)} a_x \prod_{j=1}^{\beta} h_j^x(y)$$
 satisfies $q(x) = a_x \ \forall x \in \mathcal{P}(\beta)$.

$$\widehat{g}(y) = \sum_{B_j} \mathbf{1} \left(y \in B_j \right) \sum_{x \in \mathcal{P}_j(\beta)} \widehat{f}(x) \prod_{j=1}^{\beta} h_j^x(y)$$

Analysis: Suppose

$$\left|\hat{f}(x) - f(x)\right| \lesssim \varepsilon \quad \forall j, x \in \mathcal{P}_j(\beta)$$
 Let $h \asymp \varepsilon^{d/\beta}$. If $t(x) = \text{degree } \beta$ Taylor expansion,
$$|f(x) - t(x)| \lesssim \varepsilon$$

Thus

$$|\hat{g}(y) - t(y)| \le \sum_{x \in \mathcal{P}_j(\beta)} |\hat{f}(x) - t(x)| |h_j^x(y)| \le \varepsilon$$

Results

Theorem Suppose \hat{f} is pointwise minimax optimal:

$$\sup_{y \in [0,1]^d} \mathbb{P}\left[\left| \hat{f}(y) - f(y) \right| > t \, n^{-\frac{\beta}{2\beta + d}} \right] \lesssim e^{-ct^2}$$

Then \hat{g} has these properties.

- Sublinear space: $\tilde{O}_{\beta,d}(n^{\overline{2\beta+d}})$
- Near-constant query time: $\tilde{O}_{\beta,d}(1)$
- Near-minimax error:

$$||f - \hat{g}||_{\infty} \lesssim \tilde{O}_{\beta,d}(n^{-\frac{\beta}{2\beta+d}})$$

Remarks

- Space, error bounds are near-optimal
- 2. Pointwise accuracy is weaker than sup-norm minimax optimality
- Applies to other nonparametric estimators

Question: Adaptive fast evaluation & compression?

Backurs, Indyk, & Wagner. 2019. Space and Time Efficient Kernel Density Estimation in High Dimensions. Advances in Neural Information Processing Systems (NEURIPS).

Charikar & Siminelakis. 2017. Hashing based-estimators for kernel density in high dimensions. Annual Symposium on Foundations of Computer Science (FOCS).

Chung & Yao. 1977. On Lattices Admitting Unique Lagrange Interpolations. SIAM Journal on Numerical Analysis.

Kogure. 1998. Effective interpolations for kernel density estimators. Journal of Nonparametric Statistics.