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Motivation

Fast evaluation of kernel density estimators
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o Statistically accurate, computationally slow
* Many known speed-ups:
Fast Gauss transform, locality sensitive
hashing, coresets, binning, interpolation

Question: Given an accurate estimator, can we
convert to a computationally tractable form?

Problem

Given: good estimator f for unknown [ <

Goal: Convert f to g satisfying
1. (Accurate) g is a good estimator for [
2. (Low-space) g can be stored efficiently

3. (Fast) g can be queried efficiently

Our approach
Fact: f = degree [ piecewise polynomial

Strategy: recover these polynomials from f
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Holder smooth
of order 3
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Principal Lattice Interpolation
Definition (principal lattice) Let [ € Z. Define

P(B) ={x€ RY: Bx € Z¢yand ¥, x; < 1}

Example (d = 2,5 = 5) Properties
P = (#37)

Every x € P(f) has associated

linear functions {h]x}'g such that
=1

vx' € P(B),

[T () =1(x =x)

Theorem (Chung-Yao) The degree [ polynomial

4 = repp @ [Ty KX ()
satisfies g(x) = a, Vx € P(B).

For each box Bj,

compute the Chung-
Yao interpolant

q;(y) on P;(f)
}

IO = g, 1(y € B) Yep i [ () [T/ b (1)
Analysis: Suppose

f() —f)|se Vjxe€P(B)
Let h = £%/B_If t(x) = degree 8 Taylor expansion,

f(x) —t(x)| s e

Thus
1g(y) —t(y)| < erjbj(ﬁ)‘f(x) — t(X)‘ ‘h]x(y)‘ < €

Results

Theorem Suppose f is pointwise minimax optimal:

B
sup P[If(y) f)|>tn Zf“d] Se
ye[0,1]¢

Then g has these properties.
d

* JSublinear space: éﬁ,d (n2p+d)

* Near-constant query time: 6ﬁ’d(1)

e Near-minimax error:

_ __b
If — gl = Oga(n 2F*4)

Remarks

1. Space, error bounds are near-optimal

2. Pointwise accuracy is weaker than sup-norm
minimax optimality

3. Applies to other nonparametric estimators

Question: Adaptive fast evaluation & compression?
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